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The time-correlation function for shear viscosity is evaluated for hard spheres at 
volumes of 1.6 and 3 times the close-packed volume by a Monte Carlo-  
molecular dynamics technique. At both densities, the kinetic part of the time- 
correlation function is consistent, within its rather large statistical uncertainty, 
with the long-time t -3/2 tail predicted by the mode-coupling theory. However, 
at the higher density, the time-correlation function is dominated by the cross 
and potential terms out to 25 mean free times, whereas the mode-coupling 
theory predicts that these are asymptotically negligible compared to the kinetic 
part. The total time-correlation function decays roughly as at -3/2, with a much 
larger than the mode-coupling value, similar to the recent observations by Evans 
in his nonequilibrium simulations of argon and methane. The exact value of the 
exponent is, however, not very precisely determined. By analogy with the case of 
the velocity autocorrelation function, for which results are also presented at 
these densities, it is argued that it is quite possible that at high density the 
asymptotic behavior is not established until times substantially longer than those 
attainable in the present work. At the lower density, the cross and potential 
terms are of the same magnitude as the kinetic part, and all are consistent with 
the mode-coupling predictions within the relatively large statistical uncertainties. 

KEY WORDS: Shear viscosity; Monte Carlo; molecular dynamics; long- 
time tails; time-correlation functions; velocity autocorrelation function, 

1. INTRODUCTION 

The mode-coupling theory has recently been used by Ernst et  al. ~ )  to 
evaluate the long-time behavior of the equilibrium time-correlation func- 
tions which appear in the Green-Kubo formulas for viscosity, thermal 
conductivity, and self-diffusion. These results confirm for the most part the 

Work performed under the auspices of U.S. Department of Energy. 
i Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico. 

455 

0022-4715/81/0300-0455503.00/0 �9 1981 Plenum Publishing Corporation 



456 Erpenbeck and Wood 

earlier calculations of Pomeau, (2) Kawasaki, (3) and Wainwright et aL (4) 
and extend the kinetic-theory calculations (for hard spheres and disks) of 
Dorfman and Cohen (5) and the mode-coupling results of Ernst et al.(6) by 
the inclusion of the so-called "potential" and "cross" terms in addition to 
the "kinetic" terms. 

For the shear viscosity ~7 written as the sum 

T I = ,rl KK + 2~ K'~ + ,rl ~'~" 

the Oreen-Kubo formula can be written 

~/AB = lim tlim~TAe(t) 
t -~oo 

~ A S ( t )  = f ls  p(B(t ')  

1 (J~(O)J~( t ) )  p~ ( t) = -~  

(1) 

(2) 

where t is the time, t lim denotes the thermodynamic limit, fl = 1 / k  s T, k~ 
is the Boltzmann constant, T is the temperature, V is the volume, and the 
angular brackets denote an equilibrium ensemble average. For a system of 
N particles, each of mass m, having positions and velocities ri, v i, and 
interacting pairwise through a potential ~(r i - rj), the microscopic currents 
a r e  

s:=r  
T K ~ m ~ u165 

i 

T* = 1 ~(r , j )  
- -~ i~jr/; ar 0 

(3) 

where subscripts x and y refer to tensorial components and where r,j = r i - 
rj. The mode-coupling analysis yields the long-time correlation functions 

p~S(t)~%ASt-d/2 (4) 

where d is the dimensionality of the system (d = 2 or 3) and where 

+ p-Z)SF, (4~') d/2 

+ - -  
n m  

~Kq,= 0~,/, = 0 

I~K_ 1 [ d Z - 2  
d(d + 2)B 2 [ ~-p7 a25 

p = ~l/nm 
( r -  1)2, 2(d- 1)v 

F, - nCp + d 

v =  Cl# Co 

(5) 



Molecular Dynamics Calculations 457 

with X the thermal conductivity, p the kinematic viscosity, f the bulk 
viscosity, Cp and C v the specific heats per particle at constant pressure and 
volume, respectively, and n = N / V .  

The Dorfman-Cohen (5) kinetic theory calculation of oxK(t) leads to a 
similar result, but contains the Enskog dense-gas-theory values for the 
transport coefficients in %KK. Pomeau and Resibois (7~ suggest that, for the 
truly asymptotic time regime, a more complete analysis would lead to the 
full transport coefficients, at least for the three-dimensional case. Wain- 
wright eta/ .  (4) have suggested that the hydrodynamic theory should be 
made self-consistent by introducing time-dependent transport coefficients 
in the theory. To display a measure of this uncertainty, we shall exhibit 
theoretical curves using both the Enskog values and the full values. 

An additional question arises in applying the theoretical results, be- 
cause of the lack of some indication of the time at which the predicted 
asymptotic t -3/2 behavior becomes dominant. Therefore, in studying mo- 
lecular dynamics results it is important to recognize the possible existence 
of time intervals, even at quite long times, over which the decay of the 
time-correlation function is controlled either by dynamical events not 
incorporated in the mode-coupling formulation or by mode-coupling con- 
tributions not yet in the time-asymptotic regime. 

Numerical estimates of the self-diffusion correlation function, viz. the 
velocity autocorrelation function, have been made by Alder and Wain- 
wright (8) and by us (9~ for hard disks and hard spheres. The agreement 
between these results and the kinetic-theory (or mode-coupling) result has 
been discussed by Wood.  O) For viscosity and thermal conductivity Alder et 
al. (~~ report values of the transport coefficients for hard spheres, but the 
time-correlation functions appear to be too imprecise for comparison with 
the theory. In a two-dimensional study, (4) however, these same authors 
compare molecular dynamics results for these time-correlation functions for 
hard disks (at a volume of twice the close-packed volume) with Eqs. (4) and 
(5) for shear viscosity and with the corresponding expression for the kinetic 
part of the thermal conductivity, which they derived from hydrodynamics. 
While it would appear that the kinetic part of the thermal conductivity 
agrees well with their theory, the comparison is otherwise not so conclusive. 

Evans (11) has studied the shear viscosity in three dimensions for both 
an atom-atom exp-6 potential modeling methane and for a Lennard-Jones 
6-12 potential modeling argon by a nonequilibrium molecular dynamics 
calculation, with a time-oscillating shear rate. By calculating the frequency 
dependence of the kinetic and potential parts of the stress tensor, Evans 
concluded that On(t) behaves as at -3/2, but that a is much larger than given 
by Eq. (5). The difference was ascribed to the potential and cross contribu- 
tions. 
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2. METHOD 

We have studied the validity of (4) for hard spheres through a Monte 
Carlo-molecular dynamics calculation (~2) of the shear viscosity time- 
correlation functions. For hard-core potentials, the force appearing in Eq. 
(3) for T* is impulsive, so that this expression is not useful for numerical 
computation. For hard cores of diameter o under periodic boundary 
conditions, the momentum flux can be shown (12) to have potential part 

T* = m ~ rij(tv)Avi(tv)6(t- tv) (6) 
y = l  

where q, t 2 . . . .  denote the collision times for the binary collisions, i a n d j  
depend on 7 and denote the pair of particles which collide at tv, and Av i is 
the velocity change for particle i. The r~j is the line-of-centers vector for the 
colliding pair. Because of the presence of the ~ function, the cross and 
potential terms of 0n cannot be calculated directly by molecular dynamics. 
Instead we compute the "Einstein" functions 

SAB( t) = (1/2t)(  G~ ( t)G~ ( t)) (7) 

G~(t) = ('tdt'IA 
Jo (r) 

From Eqs. (3) and (6), one obtains then 
~9 

Gn~(t ) = m ~ xij(tv)Avyi(tv)A ( t -  tv) (8) 
y = l  

where A (x) is the unit step function and where x~ and lvyi are, respec- 
tively, the x component of r~j and the y component of Av i. Evidently G~* 
can readily be evaluated along a molecular dynamics trajectory. Functions 
of the type SnAB(t) were discussed by Helfand. (13) One can show that 

p:B(t) = V -1 d 2 tsAB(t] , ,  (9)  

by proving the relation 

(G~ (t)J~(t)) = (G A ( t)J~(0))  

which follows from Liouville's theorem and the dynamical reversibility of 
the trajectory. Thus, we estimate the correlation function O~B(t) by numeri- 
cal differentiation of tSAB(t). It would appear that the Alder et aL (4'1~ 
calculations were done in the same way. 

For the present calculations, the ensemble average ( �9 �9 �9 ) is taken in 
the so-called molecular dynamics ensemble, viz. the subset of the micro- 
canonical ensemble having total momentum P = 0, in addition to fixed 
energy E, volume V, and number of particles N. The thermodynamic 
temperature then is given through the relation/3 = dN/2E. 
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We compute the reduced shear viscosity correlation function 

~AB(s) = (flto/~E)O~B(tos), S = t i t  o (10) 

in which t o is the mean free time and ~/E is the Enskog dense-gas shear 
viscosity,(14) 

~e = Xe ~ y 

c~ 3) = 1.016 

y = 2a-2noa~xe/d  

16dy2 ] 
+ (d + 2)2~r 

where XE is the pair correlation function at contact and T/0o is the Boltz- 
mann shear viscosity in the first Enskog approximation 

(d + 2)(tim) 1/2 

~1oo = 8~1 /2 (d_  1)/3oa_l (11) 

In the reduction of our data, we have replaced t o by the observed value, 
reported below in units of the low-density, large-system mean free time 

1 

and computed'~e using Xe from the Pad6 (3 x 3) approximant of Ree and 
Hoover (15) to obtain ~A s. 

The Monte Carlo-molecular dynamics program has been described in 
some detail elsewhere. (~2) The current version of the program computes 
SAB(t) at observation times which can be closely spaced at short times 
(where S An changes rapidly) and coarsely spaced at long times, viz. 
t = klh,  2klh  . . . . .  nlklh,  (n lk  I + k2)h, (nlk 1 + 2k2)h . . . . .  (n lk  I + n2k2) 
h . . . . .  where the n i and k i are integers and h is a specified time step. For 
the current viscosity calculations, h~,0.1t0, (ki} = {1,5,15}, and {ni} 
= {30, 14, 40} except for the 4000-particle system, for which { hi} = {30, 14, 
60}. The values of S~B(t) are obtained as averages over P trajectories, each 
of which consists of a fixed number 0 of time steps, starting from an initial 
phase sampled by Monte Carlo techniquea from the molecular dynamics 
ensemble. On each trajectory, SAB(t) is time-averaged (12) by the definition 
of the phase rU(t), vN(t) at times t = 0, wh, 2~0h . . . .  as "time origins"; we 
have used 60 = 5 except where noted otherwise in Table I. The spacing of 
time origins has considerable influence on the smoothness of the SAn(t)  
with time as discussed for a time-correlation function for self-diffusion in 
Ref. 12. This influence is amplified by the differencing of the sAB(t)  to get 
p~s(t) .  In order to minimize the jumpiness of p~S(t)  with time we have 
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Table I. Parameters for the Monte Carlo-Molecular-Dynamics Calculations" 

V~ V 0 N h i t  O 0 P N c . 10 -6  to~too 

1.6 108 0.0996 150,000 88 71 0.20259 _+ 0.00003 
1.6 500 0.0996 40,000 72 72 0.20114 _+ 0.00003 
1.6 4000 0.0994 4000 97 77 0.20129 _+ 0.00003 

1.6 b 4000 0.9933 320 90 57 0.20140 _+ 0.00004 
3.0 500 0.1031 40,000 106 109 0.48585 _+ 0.00004 

3.0 b,C 4000 1.0286 320 99 65 0.48611 _+ 0.0006 

ah is the time-step length, 0 the number  of time steps per trajectory, P the number  of 
trajectories, and N c the total number  of collisions. 

bNVE-ensemble calculation for the velocity autocorrelation function. 
CTime-origin spacing ~ = 4. 

chosen a time interval lh  for differencing so that the values of t are all time 
origins, viz. l - -  15. 

3. RESULTS 

The kinetic term of the time correlation function is shown in Fig. l a 
for systems of 108, 500, and 4000 particles at a volume V = 1.6 V 0 (V 0 being 
the close-packed volume), along with the long-time tail given by Eqs. (5) 
and (10). The parameters of the Monte Carlo-molecular dynamics calcula- 
tion are given in Table I. To compute the theoretical prediction requires the 
transport coefficients )t, ~, and f as well as the heat capacities. To obtain 
the latter, we use the Ree-Hoover  equation of state. (15) For the transport 
coefficients, we use both the Enskog dense-gas values (solid line) and the 
Alder e t  al .  ( l~  (molecular dynamics) values 2 (dashed line). In the evalua- 
tion of the Enskog transport coefficients, we require Xe, for which we also 
use the Ree-Hoover  equation of state. The vertical arrows in the figure 
label the transit time s a for an acoustic wave across the system (the smaller 
s a referring to the 108-particle system; sa ~ 49 for 4000 particles lies beyond 
the range of the figure). For the velocity autocorrelation function it was 
found (8'9) that finite system effects become important at times near s o. 

The 108-particle results appear to be in reasonable agreement with the 
theory (particularly the solid curve), at least for 10 < s < s a, but this 
represents quite a narrow range in the time. Based on the magnitude of the 
error bars (one standard deviation), it might appear that the solid curve in 
Fig. la is too low to fit the 15 < s < s o data for N = 500. Visual compari- 

z It is our belief that these authors, in tabulating the transport coefficients relative to their 
Enskog  values, used the first Sonine approximations to the latter. That  is, their reported 
values are for ~//~IE0], etc., where ~/tE~ is the first Sonine approximation to OE- 
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Fig. 1. The reduced shear viscosity time-correlation functions ~f18 as a function of time s, in 
units of the mean free time, for hard-sphere systems at a volume of 1.6 times close-packed: (a) 
the kinetic (KK) part, (b) the cross (K~) part, (c) the potential ( ~ )  part. The curves represent 
as -3/2 decay, with theoretical values of a for the solid (using Enskog transport coefficients) 
and the dashed (using transport coefficients from Ref. 10) curves; the dotted curves are fitted 
to the data, with a given relative to the theoretical value based on Enskog transport 
coefficients. 

sons  of t ime-co r re l a t ion  f u n c t i o n  d a t a  with theory  c a n  be  mis lead ing ,  
however ,  because  of the  p resence  of serial  co r re la t ions  in  the data .  O2) I n  
this case the  u sua l  goodness -of - f i t  tests for  c o m p a r i n g  a set of  obse rva t i ons  
with a theore t ica l  cu rve  (such as the  X 2 test) are  n o t  appropr i a t e .  A 

q u a n t i t a t i v e  c o m p a r i s o n  in  the  p resence  of such  co r re l a t ion  is p r o v i d e d  b y  
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Fig. 1. Continued. 

the T 2 statistic of multivariate statistical analysis. (16) If we define P ( T  2) to 
be the probability of observing a value of the statistic between 0 and T 2, 
then values of P(T 2) which are very close to 0 (say, from 0 to 0.025) 
"indicate a better than expected agreement with the theory, while values 
very close to 1 (say, from 0.975 to 1) indicate a larger than expected 
disagreement. We find, for the 72 presumably independent trajectories 
which enter the mean values shown in Fig. la for N = 500 and s = 15.9- 
26.4, that T z is in fact not exceptional; the calculated probability is 
P ( T  2) ----0.17 for comparison with the mode-coupling theory using Enskog 
transport coefficients and P(T 2) = 0.19 using the Alder-Gass-Wainwright 
transport coefficients. Evidently the data are not sufficiently precise to 
determine oq K/r accurately; indeed the power-law exponent is not well 
determined. 

The 4000-particle results have such large statistical uncertainties that 
the rather sizable differences from the theoretical curve prove to be quite 
unexceptional. For 15 < s < 49 the T 2 comparison with the long-time tail 
(using Enskog transport coefficients) yields P ( T  2) -- 0.55. 

For  these same systems the cross contribution is shown in Fig. lb and 
the potential contribution in Fig. lc. The magnitude of each of these in the 
s = 10-30 time interval is seen to be much greater than the kinetic part. 
Moreover, the time dependence can be reasonably fitted by the form 
as-3/z as shown by the dotted curves, although other power laws could also 
be equally acceptable. In any ease, these high-density results clearly indi- 
cate that the asymptotic mode-coupling prediction does not account for the 
largest portion of the time-correlation function in this time interval. 
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Fig. 2. The reduced velocity autocorrelation function Po as a function of time s, in units of 
the mean free time, for 4000 hard spheres at a volume of 1.6 times close-packed volume. The 
statistical uncertainty (~0.0001) is smaller than the plotting symbols. 

Whether, in fact, at longer times, the kinetic contribution might become 
dominant, in agreement with theory, cannot be inferred. 

It is worthwhile to consider the behavior of the velocity autocorrela- 
tion function at this same high density. In Fig. 2 we show the results of a 
Monte Carlo-molecular dynamics calculation 3 for 4000 hard spheres at a 
volume of 1.6 V 0 for which we compute estimates of 

Oo (s) = (u,x (O)u,x (Sto))/(u~x (0)) (12) 

where ui(t) is the velocity in the center-of-mass frame of reference, 

ui ( t )  -- v i ( t )  - P / N m ,  P = m ~ vi(0)  

The parameters for this calculation are given in Table I. 4 It is seen that the 

3 In this calculation the initial phases [rU(0), v N ( 0 ) ]  w e r e  sampled from the microcanonical 
(NVE) ensemble rather than the molecular dynamics ensemble. The difference between the 
velocity autocorrelation functions in the two ensembles is expected to be inconsequential for 

the 4000-particle system. 
4 It can be shown by a calculation similar to one in Ref. 12 that the collision rate in the 

molecular dynamics ensemble is a factor F [ ( N -  1)d/2]F(Nd/2 + �89 1) 

d /2  + �89 [where F(x) is the gamma function] times that in the NVE ensemble. Applying 

this correction to the NVE-ensemble value of the mean free time for N = 4000, V = 1.6 V o in 
Table I yields a value 0.20137to0 in the molecular dynamics ensemble. The latter is in 
satisfactory agreement with the Table I estimate 0.20129t0o obtained for the corresponding 
molecular dynamics ensemble calculation. 
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velocity autocorrelation function is negative for s between 6 and 38 and has 
certainly not reached its long-time s -3/2 (positive) decay, as shown by the 
curves in Fig. 2. The dynamical events (viz. "backscattering") responsible 
for this negative region of 0D (s) might also increase the time required for 
~n(s) to attain its asymptotic time dependence. It should be reemphasized, 
in this regard, that the pfK(t)  data of Fig. la are not sufficiently precise to 
infer that o f  K(t) has reached a region of s-3/2 decay. 

Some additional indication of the presence of high-density effects in 
the shear viscosity time-correlation functions is afforded by the results of 
Alder et al. (1~ at V = 2 V0, in which the magnitude of the cross term is 
comparable to the kinetic term in the s = 10-20 interval. More precise 
results for hard spheres at V = 3 V0 for 500 particles are shown in Fig. 3. 
The parameters for this calculation are given in Table I. It would appear 
that at this lower density the cross and potential terms vanish within 
statistical uncertainty between s = 15.0 and 21.1 [the T 2 comparison with 
zero yielding P ( T  2) = 0.85 and 0.03, respectively]. On the other hand, the 
kinetic part is in only marginal agreement with a value of zero [ P ( T  2) = 
0.94], but does agree well with the theoretical equation (5) [ P ( T  2) = 0.64]. 
Nonetheless, we note that with such a small time interval and with such 
relatively large statistical uncertainties, this agreement is principally a check 
of the magnitude of the kinetic contribution, rather than a confirmation of 
its s -3/2 character. Indeed the values of the time at which these compari- 

~ . o  
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Fig. 3. The reduced shear viscosity time-correlation functions ~B as a function of time s, in 
units of the mean free time, for 500 hard spheres at a volume of three times close-packed 
volume. 
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Fig. 4. The reduced velocity autocorrelation 
function PD as a function of time s, in units of 
the mean  free time, for 4000 hard spheres at a 
volume of three times close-packed volume. 
The statistical uncertainty (~0.0001) is smaller 
than the plotting symbols. 
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sons are made might be too small for the dominance of the mode-coupling 
result. The velocity autocorrelation function at this density is shown in Fig. 
4 for a system of 4000 hard spheres; the parameters are given in Table I. 
We observe that the molecular dynamics data do not agree with the s - 3 / 2  

tail before about 30 mean free times. 
It is of interest to also compute the coefficient of shear viscosity at 

high density in order to compare with the Alder et  al.(1~ results and the 
nonequilibrium molecular dynamics results of Naitoh and Ono. (17'18) The 
equilibrium molecular dynamics estimate ~//Oe = 1.44 ___ 0.07 by Alder et 

al. for 108 particles at V = 1.6 V 0 does not include, apparently, any correc- 
tion for the long-time tail or for the extrapolation to an infinite system. 
From the graphical results of Naitoh and Ono (17) for T/BE extrapolated to 
zero rate of shear for 108 particles, one finds values of ~/~/E = 1.71 at 
V =  1.667V 0 and ~//~E = 2.45 at V =  1.575 I10, which imply, then, a result 
at 1.6V o well above the equilibrium molecular dynamics value. Similar 
discrepancies were reported at other high densities, including V = 1.5 V 0. 
More recent calculations by Naitoh and Ono (18) at the latter density 
indicate that their results for systems of 500 or more particles are consistent 
(within rather large uncertainties arising from the extrapolation to zero 
shear rate) with the N = 500 result of Alder et  al. at this same density. It 
would appear that, even though the discrepancies between the results of the 
two methods are no longer thought to be significant, the actual value of the 
coefficient of shear viscosity (for the infinite system) at high density is 
subject to considerable uncertainty. 

In order to estimate ~ in the infinite-system limit, we need to take into 
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account the contribution of the long-time tail, including the portion beyond 
the longest times computed by molecular dynamics. If we were simply to 
add the integral of the long-time tail o.s -~/2, with a corresponding to the 
sum of the theoretical %/~x and the a values which fit the data in Fig. lb 
and lc, from the acoustic wave traversa] time s~ for N = 500 to s = oo, the 
contribution would be approximately 0 .23~,  The values of rt(sto)/~ E at 
s = Sa(500) for the 108-, 500-, and 4000-particle systems are 1.398 +_ 0.007, 
1.428 + 0.013, and 1.394 +_ 0.041, respectively. If one ignores the relatively 
imprecise N = 4000 value and linearly extrapolates the 108- and 500- 
particle values to N = ~o, one obtains 1,44~E. The resulting total value of 
the shear viscosity coefficient is, then, 1.67r/E, weii above the Alder et al. 
result. While such a large value is not in conflict with the data, it depends 
on (1) the existence of large s -3/2 tails in the cross and potential terms, 
which are in conflict with the theory, and (2) to a lesser extent, ignoring the 
possibility that ~ in fact is an increasing function of 1 I N  for N large 
enough, as indicated by the 4000-particle result. A reasonable lower bound 
on the value of ~/could be obtained by extrapolation to an infinite system 
of the data at the longest time at which ~(Sto) is available for each of the 
three systems, viz. s ~ 70, supplemented by the theoretical long-time tail 
(containing only the kinetic contribution, which proves to be negligible) 
beyond that time. However, the values of o(Sto)/~ E a r e  not monotonic in 
N; viz. 1.465 +_- 0.013, 1.5t0 +_ 0.028, and 1.482 + 0.078 for the 108-, 500-, 
and 4000-particle systems, respectively. Thus, while linear extrapolation of 
the 108- and 500-particle data yields ~/~E = 1.52 + 0.04 for the infinite 
system, one must recognize the possibility that ~q decreases with N for N 
large and that the N dependence for systems as small as 108 particles is 
anomalous. In fact, the pressure obtained for these three system sizes 
displays precisely this behavior. The dependence of the equation of state of 
hard disks on N was studied in the NpT ensemble earlier. (19) Strong 
evidence for the nonlinear dependence of the volume on 1 / N  was reported 
for the higher pressures in that study. To obtain a better estimate of 7, then, 
would appear to require both a theory for the decay of the cross and 
potential terms and much more extensive molecular dynamics calculations 
for the 4000-particle system. The latter would appear to be at the limit of 
practicality with current computer speeds, 

In another vein, attention should be called to the assertion (~t) that 
Evans' nonequilibrium method permits the calculation of 0,7( 0 with more 
than two orders of magnitude greater efficiency than by equilibrium 
molecular dynamics. Improvements of this magnitude are certainly much 
to be desired, as the present Green-Kubo calculations demand nontrivial 
computational resources. For example, the calculations reported here for 
N = 500, V = 1.6 V 0 consumed 3 4 h  of CRAY- 1 time. The Evans calcula- 
tion of p~(t), however, involves an adjustment of the particle velocities on 
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each time step of the dynamics which is not dictated entirely by the 
microscopic forces. It would, therefore, be most desirable to compare both 
methods for hard spheres, with careful attention to system-size effects. 

4. SUMMARY 

In agreement with recent nonequilibrium molecular dynamics calcula- 
tions by Evans (11) for high-density argon and methane fluids, we find the 
cross and potential contributions to the shear viscosity time-correlation 
functions for hard spheres at high density (close to the freezing density) and 
moderately long times (between 15 and 30 mean free times in our case) are 
much larger than the kinetic contribution. The latter is in approximate 
agreement as regards its magnitude with the t -3 /2  prediction of the mode- 
coupling theory, which predicts a more rapid decay for the cross and 
potential terms. Again, in agreement with Evans, we find that over this 
restricted time interval the molecular dynamics results for the cross and 
potential contributions can also be fitted by a t -3 /2  power law. However, 
the data would be consistent with other power-law exponents. Moreover, 
we question whether we in fact observe the ultimate long-time behavior, 
inasmuch as the velocity autocorrelation function in this time interval at 
this density is dominated by backscattering events and attains the expected 
positive asymptotic values only at later times. Nevertheless, it should be 
emphasized that the large magnitude of the cross and potential terms at 
these fairly long times appears to present a strong challenge to the current 
theories. In addition, we emphasize that the consequent uncertainty en- 
tailed in extrapolating the correlation-function contributions to the viscos- 
ity coefficient out to infinite time leads to appreciable uncertainty in the 
Green-Kubo value of the shear viscosity coefficient for hard spheres at 
high density. We also emphasize our belief that the question of the 
concordance of the Green-Kubo value of the viscosity with that obtained 
by the various nonequilibrium molecular dynamics methods in the limit of 
vanishing shear rate still merits further investigation. 

NOTE ADDED IN PROOF 

In a recent preprint, Evans has shown how the "thermostating" and 
the "homogeneous strain" employed in Ref. 11 can be related to the 
imposition of constraints on the equations of motion. 
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